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Burrows' formula giving an upper bound for the error in the geometric approximation is applied 
to the calculation of the ring-current contribution to the diamagnetic anisotropies of conjugated 
molecules. It is also emphasized that this approximation is easily applied in practice. 
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Introduction 

Given a Hartree-Fock ground-state wavefunction the second-order change 
in the energy due to a perturbation of the form ~ z(i) can be found by applying 

i 
what has become known as coupled Hartree-Fock perturbation theory [1-5]. 
In an attempt to simplify such a calculation and, in particular, to avoid the use 
of the iterative procedure inherent in a coupled approach, it was suggested that 
second-order properties could be estimated using the uncoupled version of the 
perturbation theory [6-11] as long as certain correction terms, calculated by 
means of the geometric approximation [12-16] were included. 

In a recent paper Burrows [17] derived an upper bound for the error, e, 
arising from such an approximation. We shall apply this formula to the calculation 
of the bound for the ring-current contributions to the anisotropies of a selection 
of conjugated molecules within a semi-empirical pi-electron framework. We show 
that, having regard to the accuracy normally associated with such a model, e is 
very small and that, therefore, there is a negligible difference between the coupled 
results and those given by corrected uncoupled theory. 

In its original formulation, application of the geometric approximation 
necessarily involved a summation over four indices in order to calculate the first 
correction term. It is thought possible that this point would have deterred workers 
from using the uncoupled method, especially for large systems, if it was believed 
that long periods of computing time would be involved. It has recently [21, 22] 
been suggested, in fact, that the coupled method compares favourably from this 
viewpoint. 

We show that this is not the case for the calculation of diamagnetic anisotropies, 
and that the special nature of the wavefunction in the presence of a magnetic field 
leads to certain simplifying features, resulting in a formula for the correction 
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which can be readily and rapidly evaluated�9 We note, in an appendix, that this is 
also true when using the test-dipole method to calculate the ring-current contribu- 
tion to the chemical shift. 

Basic Equations and Formulae 

In the presence of a magnetic field H, perpendicular to the plane of the molecule, 
the single-particle Hamiltonian F may be written, in the usual notation, as [15] 

F =  2m p +  A +V,  

where A -- A ~ = �89 17, a tilde denoting that the origin of coordinates is chosen 
arbitrarily. In terms of the so-called gauge-invariant orbitals {Zs} where 

Xs = cos e x p ( - i ~ A  s �9 ~) ,  (A~ = I H  A R s ) ,  

the new orbitals will be 

4)i = Z cisXs . 

Application of the uncoupled procedure using the zero transition dipole and 
quadrupole moments approximation [15] gives 

Fs~ = H ~ exp ( io~HS ,  st ) + F ~ _ H ~ ' 

Where H ~ is that part of the field-free Hamiltonian matrix F ~ which arises from 
one-electron terms only, and H Sst = � 8 9  " (Rs A Rt). 

Since the magnetic susceptibility is a second-order property in the field we 
expand Fst and % in orders of magnitude of H i.e. 

Fst = F ~ + i ~ H V's, + o~ 2 H 2 F~' t + . . .  

% = cos + i o~ Hc}s  + cx 2 ~ 2  g.,', .4- 

After some manipulation the second-order energy can then be shown to be 

Eo2 =E~2 + E  p , 
where 

o c t  

E~2 : - -  2cd Z (~ b~ [F'] ~b~) 
and i 

o c t  

E~ = 2c~ z ~2 (r  IF"J q~O) 

where 

i i 

and the first-order orbital coefficients satisfy the equations 

t ~ t 0 Z(r~ 
t t 
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We define a first-order bond-order matrix/5, such that 

oct 
~;t = 2  2 , o o ,  (Cis Cit - -  Ci~ e i t )  

i 

Then, in terms of these matrix elements, 

Eg 2 = _ ~ 2  Z P'~,S~, H ~  and E~ = - c d  Z p~ H ~  
S < t  S<t  

From Tuan et al. [8] we may then express the first-order correction to Ed02 as 

or162 
E~ 2 = - 2 ~ {(i'j' Ij ~ i ~ + (i ' j  ~ [j' io)} (1) 

i j  

where i ~  = 4~ ~ a n d  i' is the first-order change in the wavefunction viz. 

i' = i o ~ '  i --io~ Z A s �9 rc~ . 
s 

We note that the equation for E~2 is simpler than the corresponding equation for 
real wavefunctions as used, for example, in calculations of polarizability [ 11] where 
the correction takes the form 

or 
2 ~ {4 ( i ' f l i ~  ~ - ( i ' f  ]jo i o) _ (i,jo j j ,  io)}. 

i j  

This simplification arises because i' is pure imaginary. Evaluation of (1) using the 
usual approximations yields a sum over 4 indices 

or 
r , 0 0 E ~ 2 = 2 ~ y s , ~ , ( c i t c j s c j t c i , _  , , o o Cit C jr Cis Cjs) , 

st i j  

which may be simply written' as 

-�89 -,2. 
- -  Y,t(Ps,) (2) 

s < t  

Thus, since/5~, has already been found in the process of calculating E~2, the 
extra work involved in finding the first-order correction is minimal. 

The total second-order energy is then given by 

E 2 = E~ +/.t E~ z, 
where 

~ : ( 1  /~d 2 ) - -1  

- E L  / 
from which the pi-electron contribution to the susceptibility A K,~ is found by 
elK= = - 2 A E >  where A is Avogadro's number. 

A similar equation for the correction in a test-dipole calculation of the chemical shift is given 
in the appendix. 
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T a b l e  1. Suscept ib i l i t ies  a n d  e r r o r  b o u n d s  (uni ts  of  10 - 6  cgs emu)  

M o l e c u l e  a Suscept ib i l i ty  B o u n d  

Benzene  - 31.2 0.0 

N a p h t h a l e n e  - 66.3 - 0 . 1  
Azu lene  - 70.9 - 0 . 3  

T r i p h e n y l e n e  - 125.8 - 0.6 
P h e n a n t h r e n e  - 98.7 - 0 . 3  
C h r y s e n e  - 136.0 - 1.3 
F l u o r a n t h e n e  - 88.9 - 0 . 9  
1 1 - 1 2 - B e n z o f l u o r a n t h e n e  - 126.1 - 2.6 

a R e g u l a r  g e o m e t r y  a s s u m e d .  Semi -empi r i ca l  p a r a m e t e r s  as in [15] .  

Error Bound 

We apply the formula given by Burrows' [17] to the calculation of an upper 
bound to the magnitude of the error e in the evaluation of the magnetic suscep- 
tibility. As in the calculation of E~ 2 the imaginary nature of the first-order change 
in the wavefunction results in a simplification of the formula and it can be shown 
that, applying the usual approximations, 

O ~ e ~  
-2ooo o(  o o . 

CZ~Cm,((#-- 1) 0 H;,S~, + y ~s, ~,)) , 
AE z 

where A E is the difference between the energies of the lowest unoccupied and 
highest occupied orbitals. In Table 1 values of this bound are listed for a 
variety of conjugated hydrocarbons along with the corresponding total suscep- 
tibilities as found by applying the uncoupled procedure detailed above, fixing 2 the 
origin of coordinates at the centre of charge [-15]. We may deduce that the error, 
relative to a coupled calculation, is insignificant at the level of approximation 
inherent in a semi-empirical calculation. 

Appendix 

An analysis similar to that given above may be applied to the calculation of 
the ring-current contribution to the chemical shift, using the test-dipole method 
[16] for which the vector potential takes the form 

A = A ~  +Am=�89  A ~ + - -  
m a r  

F 3 

where the test-dipole has moment m, perpendicular to the molecular plane. The 
origin of r in A m is fixed at the proton in question. If the energy is expanded as a 

2 As  to be  expec ted ,  the  e r r o r  b o u n d  var ies  wi th  cho ice  o f  o r ig in  so t h a t  in n a p h t h a l e n e ,  for  
example ,  the  m a g n i t u d e  o f  the  b o u n d  increases  a l o n g  the  m a j o r  axis  r e a c h i n g  - 0 . 2 5  a t  a d i s t ance  o f  
2 a .u.  f r o m  the  cen t re  o f  the  m o l e c u l e  ( c o m p a r e  wi th  the  v a r i a t i o n  in the  suscept ib i l i ty  itself [15]) .  
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power series in H and m the chemical shift may then be picked out as a multiple 
of the coefficient, Ell, of Hm. In the notation of [16] 

and 

E g l l  4 e 2 ~  ~' o , ~ o 
= P j t S s t K s t H ~ t  2~ 2 ~ , = P~SstH;t 

s .<t  s<i~ 

Ebl 4 ~ 2 ~  o ~ o = P~tSs tS~ ,K~tH~t  
s < t  

where P' is the first-order bond-order matrix with respect to the test-dipole 
perturbation, and Kst is a geometric factor discussed in detail elsewhere [18-20]. 

The equation for E~ 11 may be written in the simplified form [c.f. Eq. (2)] 

E~11 =_ _ ~ 2  E Pst~stTst , 
s < t  

which, compared with the original summation over four indices [16], represents 
a considerable time saving in evaluation. 
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